.»\

Java Fundamentals (Java SE 8)
Data, Variables, and Operators

Presented by :
Eng Marwa Ali Eissa

keywords

Keywords are words that :

» Are reserved for use by Java.

» May not be used to name Java applications or objects ,such as
classes ,methods or variables.

> Are case-sensitive and in lowercase

abstract assert boolean break
byte case catch char
class const continue default
do double else enum
extends final finally float

for goto if implements
import instanceof int interface
long native new package
private protected public return
short static strictfp super
switch synchronized this throw
throws transient try void
volatile while

B S EEE—

Identifiers

An identifier is a name that:

» Identifies a variable, class or method

» Identifiers must start with either an uppercase or lowercase letter,
an underscore (_), or a dollar sign ($).

» Identifiers cannot contain punctuation, spaces, dashes,
or any of the Java technology keywords.

» Most importantly identifiers are case sensitive.

» Identifiers cannot begin with a digit (0-9)

» White space is not permitted.

) Examples of legal identifiers: age, $salary, _value, __ 1 value
O Examples of illegal identifiers : 123abc, -salary , max value

Naming Convention in Java

» packages names are in lowercase .
E.g :java.lang,java.util and com.ourglobalcompany.myproject.model

» Classes: Names should be in CamelCase is where each new word
begins with a capital letter
E.g. :CustomerAccount , Employee

» Methods & Variables : is the same as CamelCase except the first letter
of the name is in lowercase
E.g.: firstName ,orderNumber
void calculateTax() , String getSalary()

» Constants: Names should be in uppercase.
E.g.: DEFAULT_WIDTH , MAX_HEIGHT

Statements and Blocks

Statements are roughly equivalent to sentences in natural languages.
A statement forms a complete unit of execution. The following types of
expressions can be made into a statement by terminating the
expression with a semicolon (;).

= Assignment expressions

= Any use of ++ or --

= Method invocations

= Object creation expressions

// Each of the following lines i= a programming statement, wWwhich ends with a =emi-colon (;)
int mumberl = 10;

int number2=5, number3=3949;

int product;

product = numberl * number? * number3;
BEvstem.cut.println ("Hello™) ;

B S EEE—

Statements and Blocks

Multiple Java statements may be grouped using braces to form a block
statement. Block statements are logical units of statements ,usually
associated with a specific statement container such as a method or a
loop .Java allows to place a block statement within another block

public class BlockDemo {
public =tatic wvolid main (S5tring[] args) {
boolean condition = true;
if (condition) { // begin block 1
System.ocut.println({"Condition i=s true.");
¥y // end block one

—— il PSS —

.) -
amim e
=g1n DA1OCK £

o

gel=se {
System.ocut.println{"Condition i= false."):

. Y -) -
Fr amA 1l e
o0 =nd DAOCK £

B S EEE—

VELEDIES

Variables are named memory locations that are used for storing data
items of a value of a particular data type or a reference to an object.

= Variable lives confined to the scope of their definition, which cab be :

> At the local evlevel inside a method or block of code , they are called
local variables

» At the object instance lel when defined as a Non-static attribute
, also called instance variables

> At the class level when defined as a static attribute , also called
class variables

»Variables in method declarations—these are called parameters.

VELEDIES

Variable Declaration
= To declare a variable, you use the syntax :
datatype varableName;

= To Declare multiple variables using A single statement :
datatype variablel,variable2 ,variable3,..... variableN;

Variable Naming Conventions

The variable naming conversions are the same as those of identifiers

Java developers must not use the dollar symbol in a variable. Also, variable
names must not start with an underscore

Initializing Variables
You can assign values to variables in your program during variable declaration.

datatype variableName = initvalue;

datatype variablel = initvalue , variable2= initvalue2,, variableN= initvalueN;
Uninitialized Variables

Attributes (instance or static) are always initialized to a default value
local variable must be initialized otherwise the Program does not compile

B S EEE—

Data Types in JAVA

» Value Types (Built in data types - Primitive data types Like: int,
float , ..)

> Reference Types (any other type Like: objects , Interface ,
array, Enum ..)

X

int X =5;

Memory

Primitive Data Types

 There are eight primitive data types supported by Java,
and they enable you to define variables for storing data that
fall into one of three categories:

1. Numeric values
v integer (byte, short, int, and long)
v floating-point (float and double)

2. A single Unicode character (char)

3. Logical values (boolean) that can be true or false

Integer Data Types

Data Type Range Default
Value

byte 1 byte (8 bits) -27to 27-1 (-128 to +127 or 256 possible 0
values)

short 2 bytes (16 bits) =215 to 215-1 (-32,768 to 32,767 or 0
65,535 possible values)

int 4 bytes (32 bits) =231 to 231-1 (-2,147,483,648 to 0
2,147,483,647 or 4,294,967,296 possible
Values)

|Ong 8 bytes (64 bits) =263 to 263-1 (- oL

9,223,372,036854,775,808 to
9,223,372,036854,775,807, or
18,446,744,073,709,551,616
possible values)

B S EEE—

Floating-Point Data Types

Data Type W Default Value

float 32-bit 0.0f

double 64-bit 0.0d

» Float is mainly used to save memory in large arrays of floating
point numbers.

» Float data type is never used for precise values such as
currency.

» Double data type is generally used as the default data type for
decimal values. generally the default choice.

» Double data type should never be used for precise values such
as currency.

B S EEE—

Character Type

v Char data type is used to store any character.

v Java uses Unicode to represent characters

v' char data type is a single 16-bit Unicode character.
v Minimum value is "\u0000' (or 0).

v Maximum value is "\uffff' (or 65,535 inclusive).

v Default value : "u0000'

v Example : char letterA ='A'

B S EEE—

Boolean Type

v" boolean data type represents one bit of information.
v" There are only two possible values : true and false.

v" This data type is used for simple flags that track true/false
conditions.

v" Used to hold the result of an expression that evaluates
to either true or false.

v Default value : false

v The size of boolean is not defined in the Java specification, but
requires at least one bit.

v Example : boolean one = true

B S EEE—

Primitive Casting

byte = short 2int 2long 2float 92double

Implicit Casting (Automatic Type Conversions)

Explicit Casting

public class CastDemo {

public static void main(String[] args) {
» int 1 = (int) 17.5f;
System.out.println("The value after casting is:
»float = 1i;
System.out.println("The value after implicit casting is: " + f);
long 1 = 1334564544;
double d = 1;
System.out.println("The value after casting is: " + d);

Explicit casting

+ 1);

Implicit casting

¥

4

=
£l Console i3
<terminated> CastDemo [Java Application] C:\Program Files\Javaljref\bin'javaw.exe (14-5ep-2011 10:13:54 PM)
The wvalue after casting is: 17« ‘

The wvalue after implicit casting is: 17.@
The value after casting is: 1.334554544E0

Data loss due to
explicit down casting

B S EEE—

Literals

A literal in java is any item that directly represents a particular value .

Variables belonging to any primitive types can also be assigned values
and treated as literals .

Each variable type has a corresponding literal type , such as integer,
character, string and boolean

Literal
public class BankAccount {

public static final int MAX AMOUNT = 18000;

int balance = 9;

public void display() {
String message = "The balance 1s ";

3

System.out.println(message + balance);

Types of Literals

There are four types of literals in java, which are based on the
types of variables present

(1 Numeric Literal
vViint=2ex 7
v" double = ex: 12.87 , 12e22 , 19E-95
v float = ex: 12.87f, 123.988F

(] Boolean Literal
v" true or false

(] Character Literal
v o'a AH# 3 = ASCII

 String Literal
v" “hi from Marwa” , “Welcome \n in New Horizons”

B S EEE—

Escape Sequence

\t

Insert a tab in the text at this point.

Insert a backspace in the text at this point.
Insert a newline in the text at this point.

Insert a carriage return in the text at this point.

Insert a formfeed in the text at this point.

Insert a single quote character in the text at
this point.

Insert a double quote character in the text at
this point.

Insert a backslash character in the text at this
point.

Octal
Hexadecimal

Unicode Character

B S EEE—

Declaring Constants

1 A Constant is a variable type in java whose value does not
change .

[Constants are defined using the final keyword followed by the
variable declaration. By convention ,constant variable names
are in uppercase .If the name is composed of more than one
word, the words are separated by an underscore (_).

 Constants defined in this way cannot be reassigned, and it is
a compile - time error if your program tries to do so.

EX: final double P1=3.141592653589793;
EX: final int FEET_PER_YARD = 3;

B S EEE—

Expressions

An expression is a combination of operators (such as
addition '+', subtraction '-', multiplication "*', division '/")
and operands (variables or literals), that can be evaluated
to yield a single value of a certain type

1+ 2 * 3 // evaluated to int 7

int sum, number; sum + number // evaluated to an int value

// Evaluated to a double value

double principal, interestRate; principal * (1 + interestRate)

Operators

v Arithmetic Operators

v Assignment Operators

v' Relational Operators

v Logical Operators

v' Increment and Decrement Operators
v Bitwise Operators

v' Operator Precedence

Arithmetic Operators

Arithmetic operators are used in mathematical expressions

Operator | Meaning ______|Syntax _

+ Addition X+y
- Subtraction X-vy
& Multiplication X *y
/ Division X/y
% Modulus X %y
The reminder from a division
operation

String Concatenation

The + operator may used to concatenate the strings together

System.out.printin("Account Balance is"+ balance);

B S EEE—

Compound Arithmetic Assignment Operato-r-é

= Simple assignment operator, Assigns values from right side
operands to left side operand

mnm

X+=y X=X +vy
= X -= X=X -y
* — X *¥=y X=X *vy
i X/=y X=X/y

% = X %=y X=X %y

Relational Operators

Relational Operators are symbols user for determining
relational comparisons between operands. all expressions
created using relational operators will return a boolean value
, depending on whether the comparison is true

Operator ___|Meaning ______|Syntax __

== equal to X==y

= not equal to Xl=vy
greater than X>y
less than X<y

greater than orequalto X >=vy

ANV ANV

less than or equal to X<=y

B S EEE—

Logical Operators

Logical Operators evaluate expressions that carry boolean
values . The result returned by logical operators is also a
boolean value.

Operator | Meaning

& logical AND

&& conditional AND

| logical OR

|| Conditional OR

A exclusive OR (XOR)
! logical (NOT)

B S EEE—

Logical Operators - The truth tables

true false
false false false
oR(I) | tue | fase
true true
true false
Result false true
XoR (") | tue | false
false true
false true false

B S EEE—

Operator _________|Meaning

++ Increment operator; increase the
value of a numeric variable or array
element by 1

-- Decrement operator; reduce the
value of a numeric variable or array
element by 1

Prefix and Postfix

> Prefix

Placing the operator before the operand causes increment or decrement to
occur before the value of the operand is used to evaluate an expression
For example : int a=5;

int X =++a;

both x and a will have the value 6

> Postfix :

Placing the operator after the operand causes increment or decrement to
occur after the value of the operand is used in an expression

For example : int a=5;

int x =a++;

x will have the value of 5 and a will have the value 6

B S EEE—

Bitwise Operators

Binary bitwise AND (&) Returns a 1 if both bits are 1

Binary bitwise OR (|) Returns a 1 if either bit is 1

Binary bitwise XOR () Returns a 1 if both bits have different values

Unary bitwise complement (~) Changes each bit in its operand to the
opposite value

Binary left shift (<<) Shifts bits on the left to the left by a
distance denoted by the right operand .Fills
in zeros

Binary right shift (>>) Shifts bits on the left to the right by a

distance denoted by the right operand .Fills
in the highest bit on the left side.

Binary arithmetic and logical shift Shifts bits on the left to the right by a
(>>>) distance denoted by the right operand .Fills
in zeros

B S EEE—

X

Bitwise Operators

X=10 00001010

00001010 00001010

00001010
& | - <<
y=25 00011001 00011001 5
11110101
00001000 00011011 00101000
z=8 z=27 z=-11 z=40
00001010 y-.q7 11110101 _ 00001010 OX ff ff ff ff ff
10 - >> X=10 o> X=-1 >>>
2 2 2 42
00000010 11111101 00000010 0X 00 00 00 fi
7=2 7=-3 7=2 z=255

Operator Precedence

Operator precedence is the order in which operators are
evaluated in an expression containing two or more
operators

public class Kiosk 1A {

public static void main(String[] args) {

int a=3+5+ 14 - 7 + 5; «— precedence are calculated

J// Assigns value 20 to a Operators with same
from left to right

J/ Assigns value 72 to b
intb=3+5%14 -7/ 5;

J/ Assigns value 111 to c

int c = (3 +5) *14 - 7 / 5; Parentheses alter the

order of calculations

System.out.println(a);
System.out.println(b);
System.out.println(c);

B S EEE—

Operator Precedence

(..) [..] . (dot operator)

O 00 N O U1 A W N

[
o

11
12

++ -- | ~ jnstanceof
new (type) expression
* [0

+ -

<< >> >>>

< > <= >=

s e e | }\
| S A

Thank You !

