
Java Fundamentals (Java SE 8)
Data, Variables, and Operators

Presented by :

Eng Marwa Ali Eissa

;)

2

LOGOkeywords

Keywords are words that :

 Are reserved for use by Java.
 May not be used to name Java applications or objects ,such as

classes ,methods or variables.
 Are case-sensitive and in lowercase

LOGOIdentifiers

An identifier is a name that:

 Identifies a variable, class or method
 Identifiers must start with either an uppercase or lowercase letter,

an underscore (_), or a dollar sign ($).
 Identifiers cannot contain punctuation, spaces, dashes,

or any of the Java technology keywords.
 Most importantly identifiers are case sensitive.
 Identifiers cannot begin with a digit (0-9)
 White space is not permitted.

 Examples of legal identifiers: age, $salary, _value, __1_value

 Examples of illegal identifiers : 123abc, -salary , max value

LOGONaming Convention in Java

 packages names are in lowercase .
E.g :java.lang,java.util and com.ourglobalcompany.myproject.model

 Classes: Names should be in CamelCase is where each new word
begins with a capital letter
E.g. :CustomerAccount , Employee

 Methods & Variables : is the same as CamelCase except the first letter
of the name is in lowercase
E.g.: firstName ,orderNumber

void calculateTax() , String getSalary()

 Constants: Names should be in uppercase.

E.g.: DEFAULT_WIDTH , MAX_HEIGHT

LOGOStatements and Blocks

Statements are roughly equivalent to sentences in natural languages.
A statement forms a complete unit of execution. The following types of
expressions can be made into a statement by terminating the
expression with a semicolon (;).

 Assignment expressions
 Any use of ++ or --
 Method invocations
 Object creation expressions

LOGOStatements and Blocks

Multiple Java statements may be grouped using braces to form a block
statement. Block statements are logical units of statements ,usually
associated with a specific statement container such as a method or a
loop .Java allows to place a block statement within another block

LOGOVariables

Variables are named memory locations that are used for storing data
items of a value of a particular data type or a reference to an object.

 Variable lives confined to the scope of their definition, which cab be :

 At the local evlevel inside a method or block of code , they are called

local variables
 At the object instance lel when defined as a Non-static attribute

, also called instance variables
 At the class level when defined as a static attribute , also called

class variables
Variables in method declarations—these are called parameters.

LOGOVariables

Variable Naming Conventions
The variable naming conversions are the same as those of identifiers
Java developers must not use the dollar symbol in a variable. Also, variable
names must not start with an underscore

Initializing Variables
You can assign values to variables in your program during variable declaration.

datatype variableName = initvalue;

datatype variable1 = initvalue , variable2= initvalue2 , , variableN= initvalueN;

Uninitialized Variables
Attributes (instance or static) are always initialized to a default value
local variable must be initialized otherwise the Program does not compile

Variable Declaration

 To declare a variable, you use the syntax :
datatype varableName;

 To Declare multiple variables using A single statement :
datatype variable1,variable2 ,variable3 ,..... variableN;

LOGO

9

Data Types in JAVA

 Value Types (Built in data types – Primitive data types Like: int ,

float , ..)

 Reference Types (any other type Like: objects , Interface ,

array, Enum ..)

5

x

int x =5;

stack heap

Memory

ref

Data

LOGOPrimitive Data Types

s There are eight primitive data types supported by Java,
and they enable you to define variables for storing data that
fall into one of three categories:

1. Numeric values
 integer (byte, short, int, and long)
 floating-point (float and double)

2. A single Unicode character (char)

3. Logical values (boolean) that can be true or false

LOGOInteger Data Types

Data Type Size Range Default
Value

byte 1 byte (8 bits) -27 to 27-1 (-128 to +127 or 256 possible
values)

0

short 2 bytes (16 bits) -215 to 215-1 (-32,768 to 32,767 or
65,535 possible values)

0

int 4 bytes (32 bits) -231 to 231-1 (-2,147,483,648 to
2,147,483,647 or 4,294,967,296 possible
Values)

0

long 8 bytes (64 bits) -263 to 263-1 (-
9,223,372,036854,775,808 to
9,223,372,036854,775,807, or
18,446,744,073,709,551,616
possible values)

0L

LOGOFloating-Point Data Types

Data Type Size Default Value

float 32-bit 0.0f

double 64-bit 0.0d

 Float is mainly used to save memory in large arrays of floating
point numbers.
 Float data type is never used for precise values such as
currency.

 Double data type is generally used as the default data type for
decimal values. generally the default choice.
 Double data type should never be used for precise values such
as currency.

LOGOCharacter Type

 Char data type is used to store any character.

 Java uses Unicode to represent characters

 char data type is a single 16-bit Unicode character.

 Minimum value is '\u0000' (or 0).

 Maximum value is '\uffff' (or 65,535 inclusive).

 Default value : '\u0000'

 Example : char letterA ='A'

LOGOBoolean Type

 boolean data type represents one bit of information.

 There are only two possible values : true and false.

 This data type is used for simple flags that track true/false
conditions.

 Used to hold the result of an expression that evaluates
to either true or false.

 Default value : false

 The size of boolean is not defined in the Java specification, but

requires at least one bit.

 Example : boolean one = true

LOGOPrimitive Casting

byte short int long float double

Implicit Casting

Explicit Casting

(Automatic Type Conversions)

Explicit casting

Implicit casting

Data loss due to

explicit down casting

LOGOLiterals

A literal in java is any item that directly represents a particular value .

Variables belonging to any primitive types can also be assigned values
and treated as literals .
Each variable type has a corresponding literal type , such as integer,
character, string and boolean

Literal

LOGOTypes of Literals

There are four types of literals in java, which are based on the
types of variables present

 Numeric Literal
 int ex: 7
 double ex: 12.87 , 12e22 , 19E-95
 float ex: 12.87f , 123.988F

 Boolean Literal
 true or false

 Character Literal
 ‘a’ ,’A’,’#’,’3’ ASCII

 String Literal
 “hi from Marwa” , “Welcome \n in New Horizons”

LOGOEscape Sequences for Character Literals

Escape Sequence Description

\t Insert a tab in the text at this point.

\b Insert a backspace in the text at this point.

\n Insert a newline in the text at this point.

\r Insert a carriage return in the text at this point.

\f Insert a formfeed in the text at this point.

\'
Insert a single quote character in the text at
this point.

\"
Insert a double quote character in the text at
this point.

\\
Insert a backslash character in the text at this
point.

\d Octal

\xd Hexadecimal

\ud Unicode Character

LOGODeclaring Constants

 A Constant is a variable type in java whose value does not
change .

 Constants are defined using the final keyword followed by the
variable declaration. By convention ,constant variable names
are in uppercase .If the name is composed of more than one
word, the words are separated by an underscore (_).

 Constants defined in this way cannot be reassigned, and it is
a compile - time error if your program tries to do so.

EX: final double PI=3.141592653589793;

EX: final int FEET_PER_YARD = 3;

LOGOExpressions

An expression is a combination of operators (such as
addition '+', subtraction '-', multiplication '*', division '/')
and operands (variables or literals), that can be evaluated
to yield a single value of a certain type

1 + 2 * 3 // evaluated to int 7
int sum, number; sum + number // evaluated to an int value
// Evaluated to a double value
double principal, interestRate; principal * (1 + interestRate)

LOGOOperators

 Arithmetic Operators
 Assignment Operators
 Relational Operators
 Logical Operators
 Increment and Decrement Operators
 Bitwise Operators
 Operator Precedence

LOGOArithmetic Operators

Operator Meaning Syntax

+ Addition X + y

ــ Subtraction X - y

* Multiplication X * y

/ Division X / y

% Modulus
The reminder from a division
operation

X % y

Arithmetic operators are used in mathematical expressions

String Concatenation

The + operator may used to concatenate the strings together

System.out.println("Account Balance is"+ balance);

LOGOCompound Arithmetic Assignment Operators

Operator Expression Meaning

+= X += y X=X + y

=ــ X -= y X=X – y

*= X *= y X=X * y

/= X /= y X=X / y

%= X %= y X=X % y

= Simple assignment operator, Assigns values from right side
operands to left side operand

LOGORelational Operators

Relational Operators are symbols user for determining
relational comparisons between operands. all expressions
created using relational operators will return a boolean value
, depending on whether the comparison is true

Operator Meaning Syntax

== equal to X == y

!= not equal to X != y

> greater than X > y

< less than X < y

>= greater than or equal to X >= y

<= less than or equal to X <= y

LOGOLogical Operators

Operator Meaning

& logical AND

&& conditional AND

| logical OR

|| Conditional OR

^ exclusive OR (XOR)

! logical (NOT)

Logical Operators evaluate expressions that carry boolean
values . The result returned by logical operators is also a
boolean value.

LOGOLogical Operators - The truth tables

LOGOIncrement and Decrement Operators

Operator Meaning

++ Increment operator; increase the
value of a numeric variable or array
element by 1

-- Decrement operator; reduce the
value of a numeric variable or array
element by 1

Prefix and Postfix

 Prefix :
Placing the operator before the operand causes increment or decrement to
occur before the value of the operand is used to evaluate an expression
For example : int a=5;
int x =++a;
both x and a will have the value 6

 Postfix :
Placing the operator after the operand causes increment or decrement to
occur after the value of the operand is used in an expression
For example : int a=5;
int x =a++;
x will have the value of 5 and a will have the value 6

LOGOBitwise Operators

Operator Description

Binary bitwise AND (&) Returns a 1 if both bits are 1

Binary bitwise OR (|) Returns a 1 if either bit is 1

Binary bitwise XOR (^) Returns a 1 if both bits have different values

Unary bitwise complement (~) Changes each bit in its operand to the
opposite value

Binary left shift (<<) Shifts bits on the left to the left by a
distance denoted by the right operand .Fills
in zeros

Binary right shift (>>) Shifts bits on the left to the right by a
distance denoted by the right operand .Fills
in the highest bit on the left side.

Binary arithmetic and logical shift
(>>>)

Shifts bits on the left to the right by a

distance denoted by the right operand .Fills
in zeros

LOGO

29

00001010

&

00011001

00001000

00001010

|

00011001

00011011

00001010

~

11110101

X=10

y=25

z=8 z=27 z=-11

00001010

>>

2

00000010

z=2

11110101

>>

2

11111101

z=-3

X=10 X=-11

00001010

<<

2

00101000

z=40

0X ff ff ff ff ff

>>>

42

0X 00 00 00 ff

z=255

X=-1
00001010

>>>

2

00000010

z=2

X=10

Bitwise Operators

LOGOOperator Precedence

Operator precedence is the order in which operators are
evaluated in an expression containing two or more
operators

Operators with same

precedence are calculated

from left to right

Parentheses alter the

order of calculations

LOGOOperator Precedence

precedence Operator

1 (..) [..] . (dot operator)

2 ++ -- ! ~ instanceof

3 new (type) expression

4 * / %

5 + -

6 << >> >>>

7 < > <= >=

8 = !=

9 &

10 ^

11 |

12 &&

13 ||

