সমান্তর প্রগমন ও গুণোত্তর প্রগমন

(Arithmetic Progression & geometric Progression)
Ch-4

```
Page # 58
```

n সংখ্যক পদ পর্যন্ত সমষ্টি নির্ণ্য কর:

$$S_n = \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2}$$

$$= \frac{n(n+1)}{2} \left\{ \frac{(2n+1)}{3} + 1 \right\}$$

$$= \frac{n(n+1)}{2} \frac{(2n+1+3)}{3}$$

$$= \frac{n(n+1)}{2} \frac{(2n+4)}{3}$$

$$= \frac{n(n+1)}{2} \frac{2(n+2)}{3}$$

$$= \frac{n(n+1)(n+2)}{3} \text{ Ans.}$$

n সংখ্যক পদ পর্যন্ত সমষ্টি নির্ণ্য কর:

ধারাটির n তম পদ
$$t_n$$
 = $\{3+(n-1)1\}$ $\{4+(n-1)1\}$
= $\{3+n-1\}$ $\{4+(n-1)1\}$
= $\{n+2\}$ $\{n+3\}$
= $\{n+2\}$ $\{n+3\}$
= $\{n+2\}$ $\{n+3\}$
= $\{n+4\}$ $\{n+4\}$

$$n = 1, 2, 3, \dots$$
ইত্যাদি বসাইয়া পাই,

$$n = 1$$
, ነম পদ = $1^2 + 5.1 + 6$

$$n = 2$$
, ২য় পদ = $2^2 + 5.2 + 6$

$$n = 3$$
, ৩্য় পদ = $3^2 + 5.3 + 6$

....,

$$n$$
 ৩ম পদ $= n^2 + 5.n + 6$

$$S_n = (1^2 + 2^2 + 3^2 + \dots + n^2) + 5(1 + 2 + 3 + \dots + n^2) + 6(1 + 1 + 1 + 1 + \dots + 1)$$

$$= \frac{n(n+1)(2n+1)}{6} + 5\frac{n(n+1)}{2} + 6n$$

$$= n \left\{ \frac{(n+1)(2n+1)}{6} + 5\frac{(n+1)}{2} + 6 \right\}$$

$$= n \left\{ \frac{(2n^2 + 2n + n + 1) + 15(n + 1) + 36}{6} \right\}$$

= n
$$\frac{(2n^2+3n+1+15n+15+36)}{6}$$

= n $\frac{(2n^2+18n+52)}{6}$
= n $\frac{2(n^2+9n+26)}{6}$
= $\frac{n(n^2+9n+26)}{3}$ Ans.

n সংখ্যক পদ পর্যন্ত সমষ্টি নির্ণ্য কর:

$$1. 2^2 + 2. 3^2 + 3. 4^2 + \dots$$

ধারাটির n তম পদ
$$t_n$$
 ={1 + (n-1)1} { 2+(n-1)1} 2

$$= (1+n-1)(2+n-1)^2$$

$$= n(n+1)^2$$

$$= n(n^2+2n+1)$$

$$= n^3+2n^2+n$$

$$n=1, 2, 3...$$
ইত্যাদি বসাইয়া পাই, $n=1, \lambda$ ম পদ $=1^3+2.1^2+1$ $n=2, \lambda$ য় পদ $=2^3+2.2^2+2$ $n=3, ৩য় পদ $=3^3+2.3^2+3$$

$$S_n = (1^3 + 2^3 + 3^3 + \dots + n^3) + 2(1^2 + 2^2 + 3^2 + \dots + n^2) + (1 + 2 + 3 + \dots)$$

$$\neq \left\{\frac{n(n+1)}{2}\right\}^2 + 2\frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2}$$

$$= \frac{n(n+1)}{2} \left\{ \frac{n(n+1)}{2} + \frac{2(2n+1)}{3} + 1 \right\}$$
$$= \frac{n(n+1)}{2} \left\{ \frac{3n(n+1) + 4(2n+1)}{6} \right\}$$

$$\begin{bmatrix} 2 & 1 & 6 \\ n(n+1)(3n^2+3n+8n+4+6) \end{bmatrix}$$

$$= \frac{n(n+1)}{2} \frac{(3n^2 + 3n + 8n + 4 + 6)}{6}$$

$$= \frac{n(n+1)(3n^2+3n+8n+10)}{12} \text{ Ans.}$$

সংশ্বিপ্ত

n সংখ্যক পদ পর্যন্ত সমষ্টি নির্ণয় কর:

$$5^{\text{(ii)}}$$
 $1+(1+3)+(1+3+5)+\dots$

ধারাটির n তম পদ
$$t_n = 1 + 3 + 5 + 7 + \dots$$

$$= n^2$$

n = 1, 2, 3......ইত্যাদি বসাইয়া পাই,

$$n = 2$$
, ২য় পদ = 2^2

.....

$$S_n = 1^2 + 2^2 + 3^2 + \dots + n^2$$

$$=\frac{n(n+1)(2n+1)}{6}$$
 Ans.